/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements.  See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership.  The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License.  You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied.  See the License for the
* specific language governing permissions and limitations
* under the License.
*/


/**
 * AUTO-GENERATED FILE. DO NOT MODIFY.
 */

/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements.  See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership.  The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License.  You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied.  See the License for the
* specific language governing permissions and limitations
* under the License.
*/
import { Point, Path, Polyline } from '../util/graphic.js';
import PathProxy from 'zrender/lib/core/PathProxy.js';
import { normalizeRadian } from 'zrender/lib/contain/util.js';
import { cubicProjectPoint, quadraticProjectPoint } from 'zrender/lib/core/curve.js';
import { defaults, retrieve2 } from 'zrender/lib/core/util.js';
import { invert } from 'zrender/lib/core/matrix.js';
import * as vector from 'zrender/lib/core/vector.js';
import { DISPLAY_STATES, SPECIAL_STATES } from '../util/states.js';
var PI2 = Math.PI * 2;
var CMD = PathProxy.CMD;
var DEFAULT_SEARCH_SPACE = ['top', 'right', 'bottom', 'left'];
function getCandidateAnchor(pos, distance, rect, outPt, outDir) {
  var width = rect.width;
  var height = rect.height;
  switch (pos) {
    case 'top':
      outPt.set(rect.x + width / 2, rect.y - distance);
      outDir.set(0, -1);
      break;
    case 'bottom':
      outPt.set(rect.x + width / 2, rect.y + height + distance);
      outDir.set(0, 1);
      break;
    case 'left':
      outPt.set(rect.x - distance, rect.y + height / 2);
      outDir.set(-1, 0);
      break;
    case 'right':
      outPt.set(rect.x + width + distance, rect.y + height / 2);
      outDir.set(1, 0);
      break;
  }
}
function projectPointToArc(cx, cy, r, startAngle, endAngle, anticlockwise, x, y, out) {
  x -= cx;
  y -= cy;
  var d = Math.sqrt(x * x + y * y);
  x /= d;
  y /= d;
  // Intersect point.
  var ox = x * r + cx;
  var oy = y * r + cy;
  if (Math.abs(startAngle - endAngle) % PI2 < 1e-4) {
    // Is a circle
    out[0] = ox;
    out[1] = oy;
    return d - r;
  }
  if (anticlockwise) {
    var tmp = startAngle;
    startAngle = normalizeRadian(endAngle);
    endAngle = normalizeRadian(tmp);
  } else {
    startAngle = normalizeRadian(startAngle);
    endAngle = normalizeRadian(endAngle);
  }
  if (startAngle > endAngle) {
    endAngle += PI2;
  }
  var angle = Math.atan2(y, x);
  if (angle < 0) {
    angle += PI2;
  }
  if (angle >= startAngle && angle <= endAngle || angle + PI2 >= startAngle && angle + PI2 <= endAngle) {
    // Project point is on the arc.
    out[0] = ox;
    out[1] = oy;
    return d - r;
  }
  var x1 = r * Math.cos(startAngle) + cx;
  var y1 = r * Math.sin(startAngle) + cy;
  var x2 = r * Math.cos(endAngle) + cx;
  var y2 = r * Math.sin(endAngle) + cy;
  var d1 = (x1 - x) * (x1 - x) + (y1 - y) * (y1 - y);
  var d2 = (x2 - x) * (x2 - x) + (y2 - y) * (y2 - y);
  if (d1 < d2) {
    out[0] = x1;
    out[1] = y1;
    return Math.sqrt(d1);
  } else {
    out[0] = x2;
    out[1] = y2;
    return Math.sqrt(d2);
  }
}
function projectPointToLine(x1, y1, x2, y2, x, y, out, limitToEnds) {
  var dx = x - x1;
  var dy = y - y1;
  var dx1 = x2 - x1;
  var dy1 = y2 - y1;
  var lineLen = Math.sqrt(dx1 * dx1 + dy1 * dy1);
  dx1 /= lineLen;
  dy1 /= lineLen;
  // dot product
  var projectedLen = dx * dx1 + dy * dy1;
  var t = projectedLen / lineLen;
  if (limitToEnds) {
    t = Math.min(Math.max(t, 0), 1);
  }
  t *= lineLen;
  var ox = out[0] = x1 + t * dx1;
  var oy = out[1] = y1 + t * dy1;
  return Math.sqrt((ox - x) * (ox - x) + (oy - y) * (oy - y));
}
function projectPointToRect(x1, y1, width, height, x, y, out) {
  if (width < 0) {
    x1 = x1 + width;
    width = -width;
  }
  if (height < 0) {
    y1 = y1 + height;
    height = -height;
  }
  var x2 = x1 + width;
  var y2 = y1 + height;
  var ox = out[0] = Math.min(Math.max(x, x1), x2);
  var oy = out[1] = Math.min(Math.max(y, y1), y2);
  return Math.sqrt((ox - x) * (ox - x) + (oy - y) * (oy - y));
}
var tmpPt = [];
function nearestPointOnRect(pt, rect, out) {
  var dist = projectPointToRect(rect.x, rect.y, rect.width, rect.height, pt.x, pt.y, tmpPt);
  out.set(tmpPt[0], tmpPt[1]);
  return dist;
}
/**
 * Calculate min distance corresponding point.
 * This method won't evaluate if point is in the path.
 */
function nearestPointOnPath(pt, path, out) {
  var xi = 0;
  var yi = 0;
  var x0 = 0;
  var y0 = 0;
  var x1;
  var y1;
  var minDist = Infinity;
  var data = path.data;
  var x = pt.x;
  var y = pt.y;
  for (var i = 0; i < data.length;) {
    var cmd = data[i++];
    if (i === 1) {
      xi = data[i];
      yi = data[i + 1];
      x0 = xi;
      y0 = yi;
    }
    var d = minDist;
    switch (cmd) {
      case CMD.M:
        // moveTo 命令重新创建一个新的 subpath, 并且更新新的起点
        // 在 closePath 的时候使用
        x0 = data[i++];
        y0 = data[i++];
        xi = x0;
        yi = y0;
        break;
      case CMD.L:
        d = projectPointToLine(xi, yi, data[i], data[i + 1], x, y, tmpPt, true);
        xi = data[i++];
        yi = data[i++];
        break;
      case CMD.C:
        d = cubicProjectPoint(xi, yi, data[i++], data[i++], data[i++], data[i++], data[i], data[i + 1], x, y, tmpPt);
        xi = data[i++];
        yi = data[i++];
        break;
      case CMD.Q:
        d = quadraticProjectPoint(xi, yi, data[i++], data[i++], data[i], data[i + 1], x, y, tmpPt);
        xi = data[i++];
        yi = data[i++];
        break;
      case CMD.A:
        // TODO Arc 判断的开销比较大
        var cx = data[i++];
        var cy = data[i++];
        var rx = data[i++];
        var ry = data[i++];
        var theta = data[i++];
        var dTheta = data[i++];
        // TODO Arc 旋转
        i += 1;
        var anticlockwise = !!(1 - data[i++]);
        x1 = Math.cos(theta) * rx + cx;
        y1 = Math.sin(theta) * ry + cy;
        // 不是直接使用 arc 命令
        if (i <= 1) {
          // 第一个命令起点还未定义
          x0 = x1;
          y0 = y1;
        }
        // zr 使用scale来模拟椭圆, 这里也对x做一定的缩放
        var _x = (x - cx) * ry / rx + cx;
        d = projectPointToArc(cx, cy, ry, theta, theta + dTheta, anticlockwise, _x, y, tmpPt);
        xi = Math.cos(theta + dTheta) * rx + cx;
        yi = Math.sin(theta + dTheta) * ry + cy;
        break;
      case CMD.R:
        x0 = xi = data[i++];
        y0 = yi = data[i++];
        var width = data[i++];
        var height = data[i++];
        d = projectPointToRect(x0, y0, width, height, x, y, tmpPt);
        break;
      case CMD.Z:
        d = projectPointToLine(xi, yi, x0, y0, x, y, tmpPt, true);
        xi = x0;
        yi = y0;
        break;
    }
    if (d < minDist) {
      minDist = d;
      out.set(tmpPt[0], tmpPt[1]);
    }
  }
  return minDist;
}
// Temporal variable for intermediate usage.
var pt0 = new Point();
var pt1 = new Point();
var pt2 = new Point();
var dir = new Point();
var dir2 = new Point();
/**
 * Calculate a proper guide line based on the label position and graphic element definition
 * @param label
 * @param labelRect
 * @param target
 * @param targetRect
 */
export function updateLabelLinePoints(target, labelLineModel) {
  if (!target) {
    return;
  }
  var labelLine = target.getTextGuideLine();
  var label = target.getTextContent();
  // Needs to create text guide in each charts.
  if (!(label && labelLine)) {
    return;
  }
  var labelGuideConfig = target.textGuideLineConfig || {};
  var points = [[0, 0], [0, 0], [0, 0]];
  var searchSpace = labelGuideConfig.candidates || DEFAULT_SEARCH_SPACE;
  var labelRect = label.getBoundingRect().clone();
  labelRect.applyTransform(label.getComputedTransform());
  var minDist = Infinity;
  var anchorPoint = labelGuideConfig.anchor;
  var targetTransform = target.getComputedTransform();
  var targetInversedTransform = targetTransform && invert([], targetTransform);
  var len = labelLineModel.get('length2') || 0;
  if (anchorPoint) {
    pt2.copy(anchorPoint);
  }
  for (var i = 0; i < searchSpace.length; i++) {
    var candidate = searchSpace[i];
    getCandidateAnchor(candidate, 0, labelRect, pt0, dir);
    Point.scaleAndAdd(pt1, pt0, dir, len);
    // Transform to target coord space.
    pt1.transform(targetInversedTransform);
    // Note: getBoundingRect will ensure the `path` being created.
    var boundingRect = target.getBoundingRect();
    var dist = anchorPoint ? anchorPoint.distance(pt1) : target instanceof Path ? nearestPointOnPath(pt1, target.path, pt2) : nearestPointOnRect(pt1, boundingRect, pt2);
    // TODO pt2 is in the path
    if (dist < minDist) {
      minDist = dist;
      // Transform back to global space.
      pt1.transform(targetTransform);
      pt2.transform(targetTransform);
      pt2.toArray(points[0]);
      pt1.toArray(points[1]);
      pt0.toArray(points[2]);
    }
  }
  limitTurnAngle(points, labelLineModel.get('minTurnAngle'));
  labelLine.setShape({
    points: points
  });
}
// Temporal variable for the limitTurnAngle function
var tmpArr = [];
var tmpProjPoint = new Point();
/**
 * Reduce the line segment attached to the label to limit the turn angle between two segments.
 * @param linePoints
 * @param minTurnAngle Radian of minimum turn angle. 0 - 180
 */
export function limitTurnAngle(linePoints, minTurnAngle) {
  if (!(minTurnAngle <= 180 && minTurnAngle > 0)) {
    return;
  }
  minTurnAngle = minTurnAngle / 180 * Math.PI;
  // The line points can be
  //      /pt1----pt2 (label)
  //     /
  // pt0/
  pt0.fromArray(linePoints[0]);
  pt1.fromArray(linePoints[1]);
  pt2.fromArray(linePoints[2]);
  Point.sub(dir, pt0, pt1);
  Point.sub(dir2, pt2, pt1);
  var len1 = dir.len();
  var len2 = dir2.len();
  if (len1 < 1e-3 || len2 < 1e-3) {
    return;
  }
  dir.scale(1 / len1);
  dir2.scale(1 / len2);
  var angleCos = dir.dot(dir2);
  var minTurnAngleCos = Math.cos(minTurnAngle);
  if (minTurnAngleCos < angleCos) {
    // Smaller than minTurnAngle
    // Calculate project point of pt0 on pt1-pt2
    var d = projectPointToLine(pt1.x, pt1.y, pt2.x, pt2.y, pt0.x, pt0.y, tmpArr, false);
    tmpProjPoint.fromArray(tmpArr);
    // Calculate new projected length with limited minTurnAngle and get the new connect point
    tmpProjPoint.scaleAndAdd(dir2, d / Math.tan(Math.PI - minTurnAngle));
    // Limit the new calculated connect point between pt1 and pt2.
    var t = pt2.x !== pt1.x ? (tmpProjPoint.x - pt1.x) / (pt2.x - pt1.x) : (tmpProjPoint.y - pt1.y) / (pt2.y - pt1.y);
    if (isNaN(t)) {
      return;
    }
    if (t < 0) {
      Point.copy(tmpProjPoint, pt1);
    } else if (t > 1) {
      Point.copy(tmpProjPoint, pt2);
    }
    tmpProjPoint.toArray(linePoints[1]);
  }
}
/**
 * Limit the angle of line and the surface
 * @param maxSurfaceAngle Radian of minimum turn angle. 0 - 180. 0 is same direction to normal. 180 is opposite
 */
export function limitSurfaceAngle(linePoints, surfaceNormal, maxSurfaceAngle) {
  if (!(maxSurfaceAngle <= 180 && maxSurfaceAngle > 0)) {
    return;
  }
  maxSurfaceAngle = maxSurfaceAngle / 180 * Math.PI;
  pt0.fromArray(linePoints[0]);
  pt1.fromArray(linePoints[1]);
  pt2.fromArray(linePoints[2]);
  Point.sub(dir, pt1, pt0);
  Point.sub(dir2, pt2, pt1);
  var len1 = dir.len();
  var len2 = dir2.len();
  if (len1 < 1e-3 || len2 < 1e-3) {
    return;
  }
  dir.scale(1 / len1);
  dir2.scale(1 / len2);
  var angleCos = dir.dot(surfaceNormal);
  var maxSurfaceAngleCos = Math.cos(maxSurfaceAngle);
  if (angleCos < maxSurfaceAngleCos) {
    // Calculate project point of pt0 on pt1-pt2
    var d = projectPointToLine(pt1.x, pt1.y, pt2.x, pt2.y, pt0.x, pt0.y, tmpArr, false);
    tmpProjPoint.fromArray(tmpArr);
    var HALF_PI = Math.PI / 2;
    var angle2 = Math.acos(dir2.dot(surfaceNormal));
    var newAngle = HALF_PI + angle2 - maxSurfaceAngle;
    if (newAngle >= HALF_PI) {
      // parallel
      Point.copy(tmpProjPoint, pt2);
    } else {
      // Calculate new projected length with limited minTurnAngle and get the new connect point
      tmpProjPoint.scaleAndAdd(dir2, d / Math.tan(Math.PI / 2 - newAngle));
      // Limit the new calculated connect point between pt1 and pt2.
      var t = pt2.x !== pt1.x ? (tmpProjPoint.x - pt1.x) / (pt2.x - pt1.x) : (tmpProjPoint.y - pt1.y) / (pt2.y - pt1.y);
      if (isNaN(t)) {
        return;
      }
      if (t < 0) {
        Point.copy(tmpProjPoint, pt1);
      } else if (t > 1) {
        Point.copy(tmpProjPoint, pt2);
      }
    }
    tmpProjPoint.toArray(linePoints[1]);
  }
}
function setLabelLineState(labelLine, ignore, stateName, stateModel) {
  var isNormal = stateName === 'normal';
  var stateObj = isNormal ? labelLine : labelLine.ensureState(stateName);
  // Make sure display.
  stateObj.ignore = ignore;
  // Set smooth
  var smooth = stateModel.get('smooth');
  if (smooth && smooth === true) {
    smooth = 0.3;
  }
  stateObj.shape = stateObj.shape || {};
  if (smooth > 0) {
    stateObj.shape.smooth = smooth;
  }
  var styleObj = stateModel.getModel('lineStyle').getLineStyle();
  isNormal ? labelLine.useStyle(styleObj) : stateObj.style = styleObj;
}
function buildLabelLinePath(path, shape) {
  var smooth = shape.smooth;
  var points = shape.points;
  if (!points) {
    return;
  }
  path.moveTo(points[0][0], points[0][1]);
  if (smooth > 0 && points.length >= 3) {
    var len1 = vector.dist(points[0], points[1]);
    var len2 = vector.dist(points[1], points[2]);
    if (!len1 || !len2) {
      path.lineTo(points[1][0], points[1][1]);
      path.lineTo(points[2][0], points[2][1]);
      return;
    }
    var moveLen = Math.min(len1, len2) * smooth;
    var midPoint0 = vector.lerp([], points[1], points[0], moveLen / len1);
    var midPoint2 = vector.lerp([], points[1], points[2], moveLen / len2);
    var midPoint1 = vector.lerp([], midPoint0, midPoint2, 0.5);
    path.bezierCurveTo(midPoint0[0], midPoint0[1], midPoint0[0], midPoint0[1], midPoint1[0], midPoint1[1]);
    path.bezierCurveTo(midPoint2[0], midPoint2[1], midPoint2[0], midPoint2[1], points[2][0], points[2][1]);
  } else {
    for (var i = 1; i < points.length; i++) {
      path.lineTo(points[i][0], points[i][1]);
    }
  }
}
/**
 * Create a label line if necessary and set it's style.
 */
export function setLabelLineStyle(targetEl, statesModels, defaultStyle) {
  var labelLine = targetEl.getTextGuideLine();
  var label = targetEl.getTextContent();
  if (!label) {
    // Not show label line if there is no label.
    if (labelLine) {
      targetEl.removeTextGuideLine();
    }
    return;
  }
  var normalModel = statesModels.normal;
  var showNormal = normalModel.get('show');
  var labelIgnoreNormal = label.ignore;
  for (var i = 0; i < DISPLAY_STATES.length; i++) {
    var stateName = DISPLAY_STATES[i];
    var stateModel = statesModels[stateName];
    var isNormal = stateName === 'normal';
    if (stateModel) {
      var stateShow = stateModel.get('show');
      var isLabelIgnored = isNormal ? labelIgnoreNormal : retrieve2(label.states[stateName] && label.states[stateName].ignore, labelIgnoreNormal);
      if (isLabelIgnored // Not show when label is not shown in this state.
      || !retrieve2(stateShow, showNormal) // Use normal state by default if not set.
      ) {
        var stateObj = isNormal ? labelLine : labelLine && labelLine.states[stateName];
        if (stateObj) {
          stateObj.ignore = true;
        }
        if (!!labelLine) {
          setLabelLineState(labelLine, true, stateName, stateModel);
        }
        continue;
      }
      // Create labelLine if not exists
      if (!labelLine) {
        labelLine = new Polyline();
        targetEl.setTextGuideLine(labelLine);
        // Reset state of normal because it's new created.
        // NOTE: NORMAL should always been the first!
        if (!isNormal && (labelIgnoreNormal || !showNormal)) {
          setLabelLineState(labelLine, true, 'normal', statesModels.normal);
        }
        // Use same state proxy.
        if (targetEl.stateProxy) {
          labelLine.stateProxy = targetEl.stateProxy;
        }
      }
      setLabelLineState(labelLine, false, stateName, stateModel);
    }
  }
  if (labelLine) {
    defaults(labelLine.style, defaultStyle);
    // Not fill.
    labelLine.style.fill = null;
    var showAbove = normalModel.get('showAbove');
    var labelLineConfig = targetEl.textGuideLineConfig = targetEl.textGuideLineConfig || {};
    labelLineConfig.showAbove = showAbove || false;
    // Custom the buildPath.
    labelLine.buildPath = buildLabelLinePath;
  }
}
export function getLabelLineStatesModels(itemModel, labelLineName) {
  labelLineName = labelLineName || 'labelLine';
  var statesModels = {
    normal: itemModel.getModel(labelLineName)
  };
  for (var i = 0; i < SPECIAL_STATES.length; i++) {
    var stateName = SPECIAL_STATES[i];
    statesModels[stateName] = itemModel.getModel([stateName, labelLineName]);
  }
  return statesModels;
}